Filter Results By:
Products
Applications
Manufacturers
HIL
a system's simulation test of embedded controls by the electrical emulation of it's motors, sensors and actuators.
See Also: Loop, Current Loops, Loop Testers, Hardware in the Loop Simulation, Hardware-in-the-Loop
- Pickering Interfaces Inc.
product
PXI Fault Insertion (Fault Injection) Modules
PXI Fault Insertion Units (FIU), also known as Fault Injection switch products, are designed specifically for safety-critical applications where the response of a control system is required to be evaluated when sensor connections behave in unexpected ways. These modules are scalable solutions that can be used to switch signals between simulations and real-life devices in a multitude of hardware-in-the-loop (HIL) simulation and test systems. The fault insertion unit can significantly simplify and accelerate the testing, diagnosis and integration work in HIL applications.
-
product
Flight Control System Test Platform
The Flight Control System Test Platform provides a hardware in-the-loop (HIL) closed-loop test environment for dynamic and maintenance testing of Flight Control Systems (FCS) of both commercial and military aircraft. The system simulates control surface activities from multiple combinations of rudder, flaps, elevator, aileron, and engine controls to the FCS. The system delivers repeatable, cost-effective testing in a fraction of the time needed with typical in-house simulation test systems.
-
product
Systems Modeling
Altair model-based development (MBD) tools drive fast development for smarter connected systems. Altair customers simulate complex products as systems-of-systems throughout your entire development cycle from early concept design to detailed design to hardware-in-the-loop testing (HIL). Explore more by combining mechanical models with electrical models (in 0D, 1D, and/or 3D) to enable multi-disciplinary simulation and leverage automatic code-generation for your next generation embedded systems.
-
product
PCIe-7821, Kintex 7 FPGA, Digital Reconfigurable I/O Device
785359-01
The PCIe‑7821 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. Each line offers software-selectable logic levels. The PCIe‑7821 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware‑in-‑the‑loop (HIL) test, bit error rate test, and other applications that require precise timing and control.
-
product
PXIe-1487, 8 Input, 8 Output, or 4 Input/4 Output PXI FlexRIO GMSL™ Interface Module
787457-01
The PXIe-1487 combines the Maxim Integrated Gigabit Multimedia Serial Link™ (GMSL™) interface with the Xilinx FPGA for high-throughput vision and imaging applications. This module provides a high-speed digital interface for using and testing modern advanced driver assistance systems (ADAS) and autonomous drive (AD) camera sensors and electronic control units (ECUs). Additionally, the PXIe-1487 makes use of a combination of GMSL™ serializers and deserializers with a Xilinx FPGA to provide a high-throughput and customizable GMSL™ interface on PXI. The included FlexRIO driver, with LabVIEW FPGA examples, provides access and control for power-over-coax, I²C back-channel communication, and general-purpose input/output (GPIO) communication on the GMSL™ channels. The PXIe-1487 is ideal for applications such as in-vehicle data logging, lab-based playback, or hardware-in-the-loop (HIL). GMSL is a trademark of Maxim Integrated Products, Inc.
-
product
PXI Signal Insertion Switch Module
PXI Signal Insertion Switch Modules, also known as fault insertion units (FIUs), provide a set of feedthrough channels, which make the switch transparent to the system when closed. You can open or short these channels to one of two fault buses, allowing you to simulate open or interrupted connections as well as shorts between pins, shorts to battery voltages, and shorts to ground on a per-channel basis. When controlled with the LabVIEW Real-Time Module, the PXI Signal Insertion Switch Module can validate the integrity of control systems including engine control units (ECUs) and full authority digital engine controls (FADECs). You can also use the FIU models for hardware-in-the-loop (HIL) applications and electronic reliability tests.
-
product
PXIe-1487, 8 Input, 8 Output, or 4 Input/4 Output PXI FlexRIO GMSL™ Interface Module
787458-01
The PXIe-1487 combines the Maxim Integrated Gigabit Multimedia Serial Link™ (GMSL™) interface with the Xilinx FPGA for high-throughput vision and imaging applications. This module provides a high-speed digital interface for using and testing modern advanced driver assistance systems (ADAS) and autonomous drive (AD) camera sensors and electronic control units (ECUs). Additionally, the PXIe-1487 makes use of a combination of GMSL™ serializers and deserializers with a Xilinx FPGA to provide a high-throughput and customizable GMSL™ interface on PXI. The included FlexRIO driver, with LabVIEW FPGA examples, provides access and control for power-over-coax, I²C back-channel communication, and general-purpose input/output (GPIO) communication on the GMSL™ channels. The PXIe-1487 is ideal for applications such as in-vehicle data logging, lab-based playback, or hardware-in-the-loop (HIL). GMSL is a trademark of Maxim Integrated Products, Inc.
-
product
PCI-7813, 3M Gate Virtex-II FPGA, Digital Reconfigurable I/O Device
779370-01
The PCI‑7813 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. The PCI‑7813 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware-in‑the‑loop (HIL) test, custom communications protocols, bit error rate test, and other applications that require precise timing and control.
-
product
PXI Multifunction Reconfigurable I/O Module
PXI Multifunction Reconfigurable I/O Modules feature a dedicated analog-to-digital converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware. You can customize these models with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware-in-the-loop (HIL) testing, custom protocol communication, sensor simulation, and high-speed control. PXI Express models also include peer-to-peer streaming for direct data transfer to other PXI Express models.
-
product
Multifunction Reconfigurable I/O Device
Multifunction Reconfigurable I/O Devices feature a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware-in-the-loop (HIL) testing, custom protocol communication, sensor simulation, and high-speed control.
-
product
HiL Simulators
NovaCarts Battery
Exact cell simulation for validating battery management systems (BMS). "NovaCarts Battery" represents one of the most powerful and precise cell simulation systems on the market. This is leveraged by the modular and scalable HiL system to create optimum conditions for developing new battery management functions such as state-of-charge (SoC) and state-of-health (SoH) controls, active cell balancing and electrochemical impedance spectroscopy.
-
product
NI Software Suites
NI software suites aggregate the most popular LabVIEW add-ons and other application software typically combined with LabVIEW and other development environments to help you build test, design, and control applications. Each suite, excluding the Multi-IDE Bundle and the Software Platform Bundle, also includes one year of unlimited access to professional training and certification.The suites come with related NI device drivers and are shipped on USB 3.0 media to speed up your installation.The NI Automated Test Software Suite combines LabVIEW, LabWindows/CVI, and Measurement Studio with the TestStand ready-to-run, customizable test executive and the Switch Executive intelligent switch management and routing application to help you build manufacturing or production test systems.The NI Embedded Control and Monitoring Software Suite features LabVIEW and the recommended add-ons specifically for building embedded control and monitoring systems on NI reconfigurable I/O (RIO) hardware. The LabVIEW FPGA Module extends the LabVIEW graphical development platform to target FPGAs on NI RIO hardware, and the LabVIEW Real-Time Module builds on LabVIEW to deliver a programming environment for creating reliable, deterministic, and stand-alone embedded systems.The NI HIL and Real-Time Test Software Suite combines LabVIEW with VeriStand, a configuration-based software environment for efficiently creating real-time test applications. It also includes the LabVIEW Control Design and Simulation, LabVIEW Real-Time, and LabVIEW FPGA modules.To learn more about each suite, use the navigation options on the left side of the page.The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United States and other countries.
-
product
Panel-mounted HIL Power Amplifier
PAC60Ci
PAC60Ci is the six-phase real time simulation amplifier, with maximum RMS phase current of 30A and maximum output power of 450VA. This current amplifier is possessed of high accuracy and fast liner response.
-
product
NI HIL and Real-Time Test Software Suite
Suites combine LabVIEW Professional Development System with NI's most popular application softwareIncludes LabVIEW Professional, VeriStand, and the LabVIEW Real-Time and LabVIEW FPGA modulesEach new suite includes a one-year NI Training and Certification membershipSoftware is shipped on USB 3.0 media with NI device drivers included to speed up your installationConfigure real-time test applications quickly and easily; add custom functionality
-
product
NI-9866, 1-Port C Series LIN Interface Module
781963-01
1-Port C Series LIN Interface Module—The NI‑9866 is a Local Interconnect Network (LIN) interface for developing applications with the NI‑XNET driver. The NI‑9866 excels in applications requiring real-time, high-speed manipulation of hundreds of LIN frames and signals such as hardware‑in‑the‑loop (HIL) simulation, rapid control prototyping, bus monitoring, automation control, and more. You can perform this manipulation while taking other DAQ measurements in the same CompactDAQ hardware platform or while performing low-level FPGA control and embedded monitoring in the same CompactRIO Chassis.
-
product
Routing Card
SET-2010
With 64 single-ended or 32 differential channels, the SET-2010 provides exceptional signal routing capabilities in a small form factor. Unlike traditional routing matrix cards, the SET-2010 is designed specifically for the challenges of signal routing in HIL systems.
-
product
Software Platforms
Discover complete solutions for Hardware-in-the-Loop (HIL) and Rapid Control Prototyping (RCP) testing. OPAL-RT offers the most advanced real-time simulation software platforms for power systems, power electronics, aerospace and automotive sectors: RT-LAB (Multi-domain, MATLAB/Simulink® based), HYPERSIM (Power Systems), and NI VeriStand (Automotive).
-
product
FlexRay Interface Device
FlexRay Interface Devices provide two fully functional FlexRay interfaces, allowing an individual engine control unit (ECU) to be connected to the interface when other cold-start nodes are not available. You also can use the interfaces individually to connect two separate FlexRay networks while maintaining full performance on each interface. FlexRay Interface Devices work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
product
PXI MultiComputing Remote Control Module
PXI MultiComputing Remote Control Modules enable PXI systems to transfer data at multigigabytes per second with only a few microseconds of latency. You can use these models in applications such as real-time tests, hardware-in-the-loop (HIL) tests, and structural tests that need a large number of distributed PXI systems to share data with low latency.
-
product
PXIe-2514, 7-Channel, 40 A PXI Signal Insertion Switch Module
780587-14
PXIe, 7-Channel, 40 A PXI Signal Insertion Switch Module—The PXIe‑2514 fault insertion unit (FIU) is designed for hardware‑in‑the‑loop (HIL) applications and electronic reliability tests. Each module has a set of feedthrough channels that you can open or short to one or more fault buses. You can use this architecture to simulate open or interrupted connections as well as shorts between pins, shorts to battery voltages, and shorts to ground on a per-channel basis. When controlled with the LabVIEW Real-Time Module, the PXIe‑2514 is ideal for validating the integrity of control systems including engine control units (ECUs) and full authority digital engine controls (FADECs).
-
product
PXI-2512, 7-Channel, 10 A PXI Signal Insertion Switch Module
778572-12
7-Channel, 10 A PXI Signal Insertion Switch Module—The PXI‑2512 fault insertion unit (FIU) is designed for hardware‑in‑the‑loop (HIL) applications and electronic reliability tests. Each module has a set of feedthrough channels that you can open or short to one or more fault buses. You can use this architecture to simulate open or interrupted connections as well as shorts between pins, shorts to battery voltages, and shorts to ground on a per-channel basis. When controlled with the LabVIEW Real-Time Module, the PXI‑2512 is ideal for validating the integrity of control systems including engine control units (ECUs) and full authority digital engine controls
-
product
Vehicle Multiprotocol Interface Module
C Series
C Series Vehicle Multiprotocol Interface Modules use hardware-selectable NI-XNET Transceiver Cables (TRC) to communicate High-Speed/Flexible Data‑Rate CAN, Low-Speed/Fault Tolerant CAN, and/or LIN. Using the NI-XNET driver, you can create applications that require real-time, high-speed manipulation of hundreds of CAN and/or LIN frames and signals. The NI-XNET device-driven DMA engine enables the onboard processor to move frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time. C Series Vehicle Multiprotocol Interface Modules work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
product
PXIe-7820, Kintex 7 160T FPGA, 128 DIO, PXI Digital Reconfigurable I/O Module
783484-01
Kintex 7 160T FPGA, 128 DIO, PXI Digital Reconfigurable I/O Module—The PXIe‑7820 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. Each line offers software-selectable logic levels. The PXIe‑7820 supports peer‑to‑peer streaming for direct data transfer between PXI Express modules. The PXIe‑7820 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware‑in‑the‑loop (HIL) test, bit error rate test, and other applications that require precise timing and control.
-
product
Vehicle Multiprotocol Interface Device
The Vehicle Multiprotocol Interface Device excels in applications requiring real-time, high-speed manipulation of hundreds of CAN frames and signals, such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, automation control, and more. The NI-XNET device-driven DMA engine enables the onboard processor to move CAN frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time for processing complex models and applications.
-
product
Connector and Breakout Box
ES4640
The ES4640 Connector Box offers a standardized wiring and connectivity for HiL testing systems in the powertrain domain. Its front panel provides connectors for the ECU, CAN bus communication, on-board diagnostics, and LEDs for ignition and injectors. Its rear panel connects loads, failure simulation, and other components. Sample applications of the ES4640 are closed loop HiL systems for 8 cylinder gasoline and diesel engine ECUs.
-
product
ECU Simulator
PT-LabCar
PT-LABCAR is an open and scalable Hardware-in-the-Loop (HiL) system. It is designed for open- and closed-loop testing of ECUs specifically in the powertrain application domain. The system can be used to run automated regression tests for the release of software variants as well as for the validation of control and diagnostic functions in early phases of ECU development.
-
product
Digital Reconfigurable I/O Device
The Digital Reconfigurable I/O (RIO) Device features user-programmable FPGA for onboard processing and flexible I/O operation. You have complete control over the synchronization and timing of all signals and operations along with custom onboard decision-making that executes with hardware-timed speed and reliability. You can configure user-defined hardware for a wide variety of applications, such as custom digital DAQ, high-speed waveform generation, sensor simulation, hardware-in-the-loop (HIL) test, custom digital communications protocols, bit error rate testing, and other applications that require precise timing and control.
-
product
FADEC/EEC Test Platform
The FADEC/EEC Test Platform provides a hardware in-the-loop (HIL) closed-loop test environment for dynamic and maintenance testing of full-authority digital engine control (FADEC) and electronic engine control (EEC) units of both rotary- and fixed-wing airframes. The system simulates one or more turbofan engines, including its sensors and actuators for use with the most sophisticated FADECs and EECs on the market. The system delivers repeatable, cost-effective testing in a fraction of the time needed with typical in-house simulation test systems.
-
product
PXIe-1486, 8 Input, 8 Output, or 4 Input/4 Output PXI FlexRIO FPD-Link™ Interface Module
787453-01
The PXIe-1486 combines the Texas Instruments Flat Panel Display Link™ (FPD-Link™) interface with the Xilinx FPGA for high-throughput vision and imaging applications. This module provides a … high-speed digital interface for using and testing modern advanced driver assistance systems (ADAS) and autonomous drive (AD) camera sensors and electronic control units (ECUs). Additionally, the PXIe-1486 makes use of a combination of FPD-Link™ serializers and deserializers with a Xilinx FPGA to provide a high-throughput and customizable FPD-Link™ interface on PXI. The included FlexRIO driver, with LabVIEW FPGA examples, provides access and control for power-over-coax, I²C back-channel communication, and general-purpose input/output (GPIO) communication on the FPD-Link™ channels. The PXIe-1486 is ideal for applications such as in-vehicle data logging, lab-based playback, or hardware-in-the-loop (HIL). FPD-Link is a trademark of Texas Instruments.
-
product
Environmental Control System Test Platform
The Airframe Environmental Control System Test Platform provides a hardware-in-the-loop (HIL) closed-loop test environment for dynamic and maintenance testing of cockpit and cabin environmental control systems for airframes. The system simulates a military or commercial airframe cabin, including sensors and actuators from the control system and the passengers. The system delivers repeatable, cost-effective testing in a fraction of the time needed with typical in-house simulation systems.
-
product
Power Electronics Test Bench
OP1300
The multi-purpose and ready-to-use Power Electronics Test Bench combines a state-of-the-art Hardware-in-the-Loop (HIL) simulator from OPAL-RT with Imperix’s Rapid Control Prototyping (RCP) system and real power hardware. It enables rapid development of power electronics, drives and smart-grid applications across industry and academia.